Solutions for Exam Physics Laboratory 1: Data and error analysis 3 February 2017

Exercise 1

(5 points total)
(For parts a) -d), the answer should be exactly correct to get 1 point, if something is incorrect, then give 0 points)
a) $\Delta v=0.3 \mathrm{~km} / \mathrm{s}$ so $v=7.4 \pm 0.3 \mathrm{~km} / \mathrm{s}$ (1 point)
b) $\Delta \lambda=0.04 \mu \mathrm{~m}$ so $\lambda=0.38 \pm 0.04 \mu \mathrm{~m}=(3.8 \pm 0.4) \times 10^{2} \mathrm{~nm}$ (1 point)
c) $\Delta T=0.3 \mathrm{mK}$ so $T=5764150.0 \pm 0.3 \mathrm{mK}=5764.1500 \pm 0.0003 \mathrm{~K}$ (the relatively small error warrants more significant digits than originally given)
(1 point)
d) $\Delta p=0.02 \mathrm{MPa}$ so $p=2.89 \pm 0.02 \mathrm{MPa}$ (1 point)
e) Probability $P=f(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}$ with $\lambda=4.0$ and $k=2$ so $P=\frac{4.0^{2}}{2!} e^{-4.0}=0.147$ so $P=15 \%$ so answer B. Any calculation or argument may be ignored, but if a student starts OK but makes a small mistake later on, then 0.5 point may be given.
(1 point)

Exercise 2

(7 points total)
a)

$$
\begin{gathered}
Z=\sqrt{R^{2}+\left(\frac{1}{2 \pi f C}\right)^{2}}=\sqrt{5600^{2}+\left(\frac{1}{2 \pi \cdot 50 \cdot 470 \cdot 10^{-9}}\right)^{2}} \\
=\sqrt{5600^{2}+6772.55^{2}}=8787.9 \Omega
\end{gathered}
$$

[some rounding is allowed here but not necessary, because this will be required in part c); subtract 0.5 point if unit Ω is forgotten]
(1 point)
b) Method of substitution: substitute $X=\left(\frac{1}{2 \pi f C}\right)^{2} \Rightarrow X=6772.55^{2}=4.5867 \cdot 10^{7}$ Ω^{2} and $(\Delta X / X)=|-2(\Delta C / C)| \Rightarrow \Delta X=2 \cdot \frac{33}{470} \cdot X=6.441 \cdot 10^{6} \Omega^{2}$.
Substitute $V=R^{2}+X$, then $V=Z^{2}=7.7227 \cdot 10^{7} \Omega^{2}$ and
$\Delta V=\sqrt{(2 R \Delta R)^{2}+(\Delta X)^{2}}=\sqrt{[2 \cdot 5600 \cdot(5 \% \cdot 5600)]^{2}+\left(6.441 \cdot 10^{6}\right)^{2}}$
$=7.1639 \cdot 10^{6} \Omega^{2}$. Now $Z=\sqrt{V}$,
so $(\Delta Z / Z)=\frac{1}{2}(\Delta V / V)=\frac{1}{2} \cdot\left(7.1639 \cdot 10^{6} / 7.7227 \cdot 10^{7}\right)=0.0464 \approx 4.6 \%$ and $\Delta Z=0.0464 \cdot Z=407.6 \Omega \approx 0.5 \mathrm{k} \Omega$.
[some rounding is allowed here but not necessary, because this will be required in part c)]

Method of partial derivatives:

$$
\frac{\partial Z}{\partial R}=\frac{2 R}{2 \sqrt{R^{2}+\left(\frac{1}{2 \pi f C}\right)^{2}}}=\frac{R}{\sqrt{R^{2}+\left(\frac{1}{2 \pi f C}\right)^{2}}}=\frac{R}{Z}
$$

and

$$
\frac{\partial Z}{\partial C}=\frac{-2\left(\frac{1}{2 \pi f}\right)^{2} C^{-3}}{2 \sqrt{R^{2}+\left(\frac{1}{2 \pi f C}\right)^{2}}}=\frac{-1}{(2 \pi f)^{2} C^{3} \sqrt{R^{2}+\left(\frac{1}{2 \pi f C}\right)^{2}}}=\frac{-1}{(2 \pi f)^{2} C^{3} Z}
$$

so

$$
(\Delta Z)^{2}=\left(\frac{\partial Z}{\partial R} \Delta R\right)^{2}+\left(\frac{\partial Z}{\partial C} \Delta C\right)^{2}=\left(\frac{R}{Z} \Delta R\right)^{2}+\left(\frac{\Delta C}{(2 \pi f)^{2} C^{3} Z}\right)^{2}
$$

so $\Delta Z=\sqrt{31836.14+134298.01}=\sqrt{166134.15}=407.60 \Omega$, from which follows $(\Delta Z / Z)=0.0464 \approx 4.6 \%$.
[3 points for correct method/formulae (either substitution or partial derivatives); 1 point for correct value of ΔZ and
1 point for correct value of $\Delta Z / Z$;
subtract 0.5 point if unit Ω is forgotten in ΔZ]
(5 points total)
c) $Z=8787.9 \Omega$ and $\Delta Z=407.6 \Omega[$ from a) and b)] so
$Z=8.8 \pm 0.5 \mathrm{k} \Omega$ is the correct notation. [subtract 0.5 point if unit Ω or $\mathrm{k} \Omega$ is forgotten]
(1 point)

Exercise 3

(4 points total)
a) $m_{1}=37.3 \pm 0.2 \mathrm{~g}, m_{2}=37.4 \pm 0.1 \mathrm{~g}, m_{3}=37.2 \pm 0.3 \mathrm{~g}$, so
$w_{1}=s_{1}^{-2}=25, w_{2}=s_{2}^{-2}=100, w_{3}=s_{3}^{-2}=11.1111$.
$m_{\text {avg }}=\frac{\sum w_{i} m_{i}}{\sum w_{i}}=37.3653 \approx 37.37 \mathrm{~g}$. (1 point for correct weights +1 point for correct weighted average; if the answer contains more than 2 decimal places, subtract 0.5 point; subtract 0.5 point if unit forgotten)
(2 points total)
b) ${\frac{1}{s_{m_{\text {avg }}}}}^{2}=\sum w_{i}=136.1111 \Rightarrow s_{m_{\text {avg }}}=136.1111^{-1 / 2}=0.0857 \approx 0.09 \mathrm{~g}$ (round error upward). In the correct notation: $m_{\text {avg }} \pm \Delta m=37.37 \pm 0.09 \mathrm{~g}$ (but this notation is not required here)
(2 points total; subtract 0.5 point if unit forgotten)

Exercise 4

(4 points total)
a) $z_{1}=\left(\rho_{1}-\rho_{a v}\right) / \sigma=(3.503-3.515) / 0.015=-0.012 / 0.015=-0.8$ and $z_{2}=$ $\left(\rho_{2}-\rho_{a v}\right) / \sigma=(3.536-3.515) / 0.015=0.021 / 0.015=1.4$ so probability $P=$ $\int_{z_{1}}^{z_{2}} N(y) d y=\int_{-0.8}^{1.4} N(y) d y=\int_{0}^{0.8} N(y) d y+\int_{0}^{1.4} N(y) d y \approx 0.2881+0.4192=$ 0.7073 so $P \approx 71 \%$. (1 point for correct method, 1 point for correct numbers) (2 points total)
b) $z_{3}=\left(\rho_{3}-\rho_{a v}\right) / \sigma=(3.497-3.515) / 0.015=-0.018 / 0.015=-1.2$ so probability $P=\int_{-\infty}^{z_{3}} N(y) d y=\int_{-\infty}^{-1.2} N(y) d y=\int_{1.2}^{\infty} N(y) d y=\frac{1}{2}-\int_{0}^{1.2} N(y) d y \approx \frac{1}{2}-0.3849=$ 0.1151 so $P \approx 12 \%$. (1 point for correct method, 1 point for correct numbers) (2 points total)

Exercise 5

(9 points total)
a) $\bar{T}=(1 / 5) \times(4.2+4.1+4.4+4.5+4.0)=4.24 \approx 4.2 \mathrm{~K}$. (4.24 is one digit too many, given the number of decimals in the input data: subtract $\frac{1}{2}$ point)
(2 points total)
b) $N=5 ; s=\sqrt{\frac{1}{N-1} \sum_{i=1}^{5}\left(T_{i}-\bar{T}\right)^{2}}=$
$\sqrt{\frac{1}{4}\left((-0.04)^{2}+(-0.14)^{2}+0.16^{2}+0.26^{2}+(-0.24)^{2}\right)}=\sqrt{\frac{1}{4} 0.1720}=\sqrt{0.043}=$ $0.2074 \approx 0.3 \mathrm{~K}$ (round error upward, subtract 1 point if this is not done; subtract 0.5 point if units are not given).
(2 points)
c) $s_{m}=s / \sqrt{N}=0.2074 / \sqrt{5}=0.0927 \approx 0.1 \mathrm{~K}$. (round error upward). If $s_{m}=$ $s / \sqrt{N}=0.3 / \sqrt{5}=0.134 \approx 0.2 \mathrm{~K}$ is given, this is also counted as correct. (round error upward, subtract 1 point if this is not done; subtract 0.5 point if units are not given).
(2 points)
d) 175 measurements extra, so in total $175+5=180$ measurements. The error s_{m} is smaller by a factor of $\sqrt{180 / 5}=\sqrt{36}=6$.
(2 points)
e) No, because very many extra measurements are needed, which takes a lot of time and effort. It is better to use a more accurate method to begin with.
(1 point)

Exercise 6

(9 points total)

$$
\begin{gathered}
a=\frac{N \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}, \\
(\Delta a)^{2}=\left(\frac{1}{\sum x_{i}^{2}-N \bar{x}^{2}}\right) \frac{\sum r_{i}^{2}}{N-2},
\end{gathered}
$$

x	$y \pm \Delta y$	r
-2	5 ± 2	0.6780
-1	2 ± 3	-1.0678
1	1 ± 1	0.4407
3	-2 ± 2	-0.0508

Table 1: Observations for exercise 6, now with residuals.

$$
(\Delta b)^{2}=\left(\frac{1}{N}+\frac{\bar{x}^{2}}{\sum x_{i}^{2}-N \bar{x}^{2}}\right) \frac{\sum r_{i}^{2}}{N-2} .
$$

a) $N=4, \sum x_{i}=1, \sum y_{i}=6, \sum x_{i}^{2}=15, \sum x_{i} y_{i}=-17$
$\Rightarrow a=(4 \cdot-17-1 \cdot 6) /\left(4 \cdot 15-\{1\}^{2}\right)=-1.2542 \approx-1.3$
and $\bar{x}=0.25, \bar{y}=1.5 \Rightarrow b=\bar{y}-a \bar{x}=1.8136 \approx 1.8$. (if values for a and b are not rounded to 1 or 2 decimal places, subtract 0.5 point just once)
(2 points total)
b) $\sum r_{i}^{2}=1.7966 \Rightarrow(\Delta a)^{2}=\left(15-4 \cdot 0.25^{2}\right)^{-1}(1.7966 /\{4-2\})=0.0609$
$\Rightarrow \Delta a=0.2468 \approx 0.3$ (rounded upward)
and $(\Delta b)^{2}=\left(1 / 4+0.25^{2} /\left\{15-4 \cdot 0.25^{2}\right\}\right)(1.7966 /\{4-2\})=0.2284$
$\Rightarrow \Delta b=0.4779 \approx 0.5$ (rounded upward) (if values for Δa and Δb are not rounded up to 1 decimal place, subtract 0.5 point just once)
(2 points total)
If substitute answers $a=-1.5$ and $b=2$ are used, then $r=(0,-1.5,0.5,0.5)$ and $\sum r_{i}^{2}=2.75$ so $\Rightarrow(\Delta a)^{2}=\left(15-4 \cdot 0.25^{2}\right)^{-1}(2.75 /\{4-2\})=0.0932$ $\Rightarrow \Delta a=0.3053 \approx 0.4$ (rounded upward) and $(\Delta b)^{2}=\left(1 / 4+0.25^{2} /\left\{15-4 \cdot 0.25^{2}\right\}\right)(2.75 /\{4-2\})=0.3496$ $\Rightarrow \Delta b=0.5912 \approx 0.6$ (rounded upward)
c) $\chi_{\text {obs }}^{2}=\sum\left\{r_{i} /\left(\Delta y_{i}\right)\right\}^{2}=(0.6780 / 2)^{2}+(-1.0678 / 3)^{2}+(0.4407 / 1)^{2}+(-0.0508 / 2)^{2}=$ 0.4365. (subtract 1 point for forgetting squares in formula; no points at all if summation is forgotten; subtract 1 point if $\Delta y=$ constant is used; subtract 1.5 point if mistake in calculation; if only the correct formula is written without any further calculation, give 0.5 point for knowing the formula)
(3 points total)
If substitute answers $a=-1.5$ and $b=2$ are used, then $r=(0,-1.5,0.5,0.5)$ so $\chi_{\text {obs }}^{2}=(0 / 2)^{2}+(-1.5 / 3)^{2}+(0.5 / 1)^{2}+(0.5 / 2)^{2}=0.5625$.
d) 2 parameters a and b are fitted, so $\nu=N-2=2$. (1 point)
1% level $\Rightarrow \chi_{\text {table }}^{2}=0.020,99 \%$ level $\Rightarrow \chi_{\text {table }}^{2}=9.210 . \chi_{\text {obs }}^{2}$ is in between those two limits, so the linear fit is acceptable. (1 point) (2 points total)

If substitute answers $a=-1.5$ and $b=2$ are used, then $\chi_{o b s}^{2}=0.5625$, which is still in between the two limits, so a linear fit is still acceptable in this case.

